On the Effect of Material Spatial Randomness in Lattice Simulation of Concrete Fracture

Jan Eliáš Miroslav Vořechovský Brno University of Technology

Deterministic Model description

- developed by Gianluca Cusatis Cusatis, G., Bažant Z.P. and Cedolin, L., 2003 Cusatis, G., Bažant Z.P. and Cedolin, L., 2006 Cusatis, G., Cedolin, L., 2007
- discrete model
- static (time independent)
- geometrically linear
- fixed underlying lattice that determines contacts between cells
- damage model ignoring frictional slips

Discretization

- pseudo-random placing of concrete grains with radii respecting given sieve curve
- tessellation into rigid cells

Contact: strain components

Elastic stress boundary

- formulated in normal and effective shear stress
- dependent on direction of straining

Softening curve

Correct energy dissipation

area under contact constitutive law represents energy dissipated between two grains

 ϵl

 σ

 G_f^t 2E f_s^2

Stresses at the contacts

$$\sigma_N = (1 - D) E \varepsilon_N$$
$$\sigma_M = \alpha (1 - D) E \varepsilon_M$$
$$\sigma_L = \alpha (1 - D) E \varepsilon_L$$

Material spatial randomness

- every connection has random
 - tensile strength f_t tensile fracture energy G_t
 - shear strength f_s shear fracture energy G_s
- full correlation of these properties and the same coefficient of variation (20%)
- continuous spatial fluctuation
- autocorrelated random field $oldsymbol{H}(oldsymbol{x})$ of mean 1 and CoV 20%

$$X(\boldsymbol{x}) = \bar{X}\boldsymbol{H}(\boldsymbol{x})$$

Random field parameters - CDF

$$F_H(h) = \begin{cases} r_f \left(1 - e^{-\langle h/s_1 \rangle^m} \right) & 0 \le h \le h_{gr} \\ F_H(h_{gr}) + \frac{r_f}{\delta_G \sqrt{2\pi}} \int_{h_{gr}}^h e^{-(h - \mu_G)^2 / 2\delta_G^2} \mathrm{d}h & h > h_{gr} \end{cases}$$

- Weibull-Gauss graft derived for strength
- four independent 1. parameters (DOFs)
 - Mean =1
 - CoV = 0.2
 - Weibull mod. $m = 24^{\circ}$
 - grafting prob. $F_H(h_{gr}) \approx 10^{-4}$

Random field parameters

correlation structure given by

$$\rho_{ij} = \exp\left[-\left(\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|}{d}\right)^2\right]$$

• d is correlation length considered as 40 and 80 mm

Random field generation

- random field value generated in 24 realizations $H^0(x), H^1(x), \dots, H^{N-1}(x)$ at center of every lattice connection
- initially as Gaussian $\widehat{H}^c(x)$, then transformed to Weibull-Gauss field $H^c(x)$

$$\boldsymbol{H}^{c}(\boldsymbol{x}) = F_{H}^{-1}(\Phi(\widehat{\boldsymbol{H}}^{c}(\boldsymbol{x})))$$

 Isoprobabilistic transformation disturbs field correlation structure. This was fixed by Nataf model.

Gaussian random field generation

- Karhunen-Loéve expansion
- considered K eigenvalues λ and corresponding eigenvectors ψ of field covariance matrix $_{K}$

Optimal linear estimation method

- large covariance m. => slow eigen-decomp.
- random field generated rather on the regular grid and then "projected" on the lattice

$$\widehat{oldsymbol{H}}^{c}(oldsymbol{x}) = \sum_{k=1}^{K} rac{\xi_{k}^{c}}{\sqrt{\lambda_{k}}} oldsymbol{\psi}_{k}^{T} oldsymbol{C}_{xg}$$

Specimen geometry

D = 300 mm S = 2.4 D $\alpha = \{0, 1/6\}$ terminated at 1/3F

Notched beams $- \alpha = 1/6$

Damage patterns

random field

1.0

damage at peak final damage

damage

0

0.5

1/41/23/4 **RF** value

deterministic

d = 80 mm

1.5 1.8

d = 40 mm

Energy dissipation

same mean curves but difference in standard deviation

Unnotched beams

Damage patterns

random field

damage at peak final damage

damage

deterministic

1.5 1.8 1.0 d = 80 mm

d = 40 mm

Location of Crack initiation

Energy dissipation

different mean curves and standard deviation

Sources of energy difference

• i) inside and ii) outside the macrocrack

Conclusions

- Results confirmed natural expectations.
- Mean values of deep notch beams (strenth, response curve, dissipated energy, ...) are not infuenced by randomness.
 But the strandard deviations are.
- Mean values of unnotched results depends on randomness. Less energy is dissipated in random case.

- What happen in case of shallow notches?
- What happens when mesoscopic strengths and fracture energies are negatively correlated?